Эффективные стратегии для численного решения сингулярно возмущенных обыкновенных дифференциальных уравнений
В 15:00 по московскому времени
Институт компьютерных наук и телекоммуникаций 网上买足彩的app,足彩app哪个是正规的 организует научный семинар, в ходе которого автор представит результаты своей диссертационной работы, посвященной разработке численных методов для решения сингулярно возмущенных начальных и краевых задач для систем дифференциальных уравнений. Центральная тема доклада — преодоление ограничений существующих численных методов, особенно при решении жестких задач, где традиционные подходы либо требуют значительного увеличения времени расчета, либо оказываются недостаточно эффективными.
Докладчик:
Екатерина Цапко - соискатель института компьютерных наук и телекоммуникаций 网上买足彩的app,足彩app哪个是正规的. Закончила в 2022 году аспирантуру Федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт (национальный исследовательский университет)», кафедра «Мехатроника и теоретическая механика».
Автор предлагает модификацию метода продолжения решения по наилучшему аргументу, которая обеспечивает более высокую точность и эффективность в решении жестких и сверхжестких задач. В докладе рассмотрено математическое моделирование ряда тестовых и прикладных жестких задач.В качестве тестовых задач рассмотрены степенной и экспоненциальные тесты, предложенные в работах Н.Н. Калиткина и А.А. Белова. Вычислительный эксперимент показывает, что при степенной скорости роста наилучший аргумент, отсчитываемый по касательной вдоль интегральной кривой рассматриваемой задачи, эффективен. Однако при сверх степенной или экспоненциальной скорости роста он таковым не является. Предложенная автором модификация направлена на снижение жесткости таких задач. На тестовых задачах и прикладной задаче о сверхзвуковом течении в канале переменного сечения продемонстрированы преимущества и недостатки нового подхода. Особое внимание уделено теоретическим аспектам метода, а именно анализу устойчивости явного метода Эйлера для задачи, преобразованной к модифицированному наилучшему аргументу. Это позволит глубже понять принципы работы метода и его применение в различных областях научного исследования.
Разработанная вычислительная программа для ЭВМ получила государственную регистрацию: «Численное решение системы обыкновенных дифференциальных уравнений с помощью модифицированного наилучшего параметра». Свидетельство о государственной регистрации программы для ЭВМ № 2022610641, 13.01.2022г.
Работа была поддержана аспирантским грантом РФФИ: №